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Abstract-This paper shows that the hot spot temperature of an electronic module with finned air heat 
sink can be reduced by allowing the fin thickness and height to increase in the flow direction X. The hot 
spot temperature decreases by about 15% if the thickness of a plate fin with constant height increases as 
.Y”~‘. The decrease is approximately 30% if the height of a constant-thickness plate fin increases as x, i.e. 
if the fin shape is almost like a triangle when viewed from the side. In addition to lowering the hot spot 
temperature, the fin thickness and height variations recommended by this study lead to considerably more 

uniform temperature distributions on the module surface on which the fins are installed. 

1. INTRODUCTION 

IN THIS paper we explore two ways in which the 
geometry of finned electronic packages can be 
optimized so that the thermal contact between the 
package and the coolant (forced air) is maximized. 

We consider varying in the flow direction the thickness 
and the height of the plate fins. The augmentation 
of air cooling is recognized as an important task in 
electronics packaging, and promises to gain in import- 
ance in the foreseeable future. The reason is that the 
use of forced air is the most accessible and simplest 
method of cooling electronics, particularly in instru- 
ments and personal computers [I]. These systems must 

be effective (i.e. functional) and robust [2] so that they 
can operate safely in diverse environments, some of 
which are hostile (e.g. contaminated air, high tem- 
perature and humidity, noise, vibrations). Reviews of 
air cooling advances [3] and extended surface research 
[4, 51 do not indicate that the augmentation methods 
proposed in this paper have been studied before. 

The importance of the air cooling augmentation 

problem is stressed further by the push toward pack- 
age designs with higher power densities. This trend 
leads to higher temperatures and higher temperature 
gradients, which threaten the operation of the elec- 
tronics. In addition, they lead to differential thermal 
expansion at the interface between the package and 
its substrate, and the resulting thermal stresses thre- 
aten the integrity of the assembly. To minimize the 
temperature of the hot spots, and to distribute the 
temperature as uniformly as possible through the 
package, is a central objective in the thermal design 
of electronics. This objective calls for more realistic 
models, more rigorous analyses, and a more precise 
fine-tuning of the optimal thermal design. 

If we look at a relatively simple example of an 

electronic package cooled with forced air (e.g. Fig. 1, 
top), we are struck by the main challenge that con- 
fronts the thermal designer: the package is a ‘com- 
plicated’ thermal system. The complications are due 
not only to the many geometric features (shapes, sizes) 

that characterize the heat sink and the package, but 
also to the fact that the conduction through the solid 
parts is coupled intimately to the flow of the coolant. 
The flow and its cooling capability change as the 
designer modifies the geometry of the solid parts. 

Because of this coupling and the designer’s need to 

compare many competing configurations, a rigorous 
way to proceed is by modelling the flow and solid- 
body conduction as a whole. We illustrate the numeri- 
cal implementation of this complete (conjugate con- 

duction and convection) model in the last segment of 
this paper (Section 5). One limitation of this approach 
is that the flow must be computed every time that the 

designer makes a change in the geometry. This leads 
to a numerical design tool that is relatively inflexible 
and costly. 

This is why in the opening part of the paper we try 
a simpler and more flexible model, which begins with 

making some assumptions about the local thermal 
coupling between the air flow and conduction through 
each fin (e.g. equation (6)). This simple model is then 
used for the purpose of identifying the degrees of 
freedom (dimensionless groups) that control the 
design, and the ways in which these groups can be 
selected so that the package-coolant thermal contact 
is improved. Finally, in Section 5 the design trends 
recommended by the simple model are pursued fur- 
ther by using the complete model in which the flow 
and solid-body conduction are computed together for 
a given geometric configuration. 

433 



434 M. MOREGA and A. BEJAN 

NOMENCLATURE 

0 plate sharpness parameter. equation ( 17) f average plate thickness, equation (9) 
h crest inclination parameter. equation (7) T plate temperature 

Bi Biot number, equation (I) T dimensionless temperature. equation (29) 

C constant, equation (8) T, free stream temperature 

n plate-to-plate spacing, Fig. I 2.4, 13, M‘ velocity components 

(1 domain dimension, Fig. 6 I/, V. W dimensionless velocity components. 

/I heat transfer coefficient, equation (6) equation (25) 

11, I2 value at .Y = L (I, free stream velocity 

I; order of magnitude of h .Y, j’ Cartesian coordinates, Fig. 1 

II plate height, Fig. I .Y, ~1, z Cartesian coordinates, Fig. 6 

A height averaged from Y = 0 to L Jr’, Y. Z dimensionless coordinates, 

A dimensionless average height, equation (25). 

equation (16) 
k thermal conductivity of fin material Greek symbols 

k, thermal conductivity of air x fluid thermal diffusivity 

I, m domain dimensions, Fig. 6 0 dimensionless excess temperature, 

L plate length, Fig. I equation (I I) 

12 number of plates (I ilo, hot spot excess temperature. 

II, direction normal to the crest equation (I 8) 

P pressure \’ kinematic viscosity 

P dimensionless pressure, equation (26) <. V dimensionless coordinates, equation (IO) 

PC, Peclet number, U, L/cc /’ fluid density 

q1 heat transfer removed through one fin T dimensionless plate thickness, 

Y’ heat transfer rate of one fin, per unit equation (I I). 

Icngth, q,/L 
(~I1 heat flux generated by the package Subscripts 

Rr, Reynolds number. I/, L/v ( )m minimum 

t plate thickness ( Lpt optimum. 

2. PLATE FIN WITH TWO-DIMENSIONAL reproduces the optimal numbers of plate fins deter- 
CONDUCTION mined by Nakayama et al. [6]. 

The two studies mentioned above are relevant to 
The development of the fin model used in the pre- the development of the present model for a very 

sent study can seen by reading Fig. I from top to 
bottom. Nakayama et (11. [6] showed that the heat 
transfer rate removed from a finned package (Fig. I, 
top) reaches a maximum when the air cooled heat 
sink consists of a certain number (n) of plate fins. 
Specifically, for a square package (Lx L) they 
reported that no,,, g 9.10 and 

( 1/2)~(/:. Bejan and Sciubba’s [7] formula 

important reason. As was shown analytically in Bejan 
and Sciubba [7], the plate-to-plate spacing is optimal 
when the boundary layers are thinner than the plate- 
to-plate spacing, such that they meet only at the exit 
from the plate-to-plate channel. This means that the 
heat transfer to the air stream takes place across lami- 
nar forced convection boundary layers. It means also 
that for the purpose of optimizing the design of the 
heat sink we may focus on a single fin with laminar 

boundary layers on both sides. The heat transfer input 
to the single fin is distributed uniformly along the base 
of the fin, q’ = q,/L. constant. 

It is important to stress that by focusing on the 
optimization of a single plate fin we are assuming that 
the heat sink (i.e. the stack of fins) has already been 
optimized with respect to selecting the proper number 

of fins, nap,, or fin-to-fin spacing, D,,,,. 
The mode1 of the plate fin is shown in the lower part 

of Fig. I. In accordance with the classical treatment of 
one-dimensional fins, we assume that the temperature 
variation across the plate (in the z direction) is neg- 
!igible in comparison with the temperature changes 
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~ fromabove 

FIG. I. Forced convection-cooled electronic package with plate-fin heat sink (top), and two-dimensional 
conduction model for a single plate fin (bottom). 

experienced in the x and y direction. This approxi- 
mation is valid when the Biot number is small (e.g. 
Bejan [8], pp. 6465) 

k 

The plate temperature 

ar r -=-Ft at y=O 
(?y 

aT 
~ = 0 at y = H(x) 
an, 

aT 
~ = 0 at x = 0,L. 
ax 

(2) 

(3) 

(4) 

(5) 

Equations (4) (5) represent the assumption that the 
plate is sufficiently thin (f CC H) so that the heat 

transfer through the exposed edges is negligible in 
comparison with the heat input along the base. Equa- 
tion (4) is the homogeneous Neumann boundary con- 
dition applied on the inclined crest of the plate, where 
n, is the direction normal to the crest. The zero-flux 
condition at the leading edge x = 0, equation (5), 

could be replaced by the Dirichlet condition T = T,, 
because the leading edge assumes the temperature of 
the free stream. Numerical tests showed that these 
two conditions, aT/ax = 0 and T = T, at x = 0, lead 

to the same results. The numerical results reported in 
this paper were obtained using T = T, on the leading 
edge. 

The assumption that the plate has a thin frontal 

cross-section as it is approached by the fluid means 
that the flow is oriented mainly in the x direction 

along the lateral surfaces of the plate. The local heat 
transfer coefficient h between a point (x,y) on the plate 
surface and the surrounding free-stream fluid (T,) 
decreases in the x direction, because the boundary 
layer becomes thicker. The scale analysis of the lami- 
nar boundary layer sandwiched between two different 
temperature scales (T and T,, with unspecified dis- 
tribution of T vs x) showed that h decreases as ,I-“* 
(Bejan [9], p. 38). In this paper we recognize this trend 
by writing 
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(6) 

in which h,_ is the value of h at the trailing edge. We 
will use h, as the representative order of magnitude 
of h. Note further that equation (6) agrees with the 
classical h formulas known for the extreme models of 
the wall with uniform flux and wall with uniform 

temperature. The present plate fin model falls between 
these two extremes, most likely very near the uniform 

flux description (i.e. h(T- T,) = constant vs X) 
because of the uniform heat input specified along the 
base. Finally, note that the h,. scale is relatively insen- 

sitive to the manner in which the surface temperature 
T varies with .Y: the ratio between the extreme h,. 
values of the uniform-flux wall and the isothermal 

wall is 0.453/0.332 = 1.36. 
The geometry of the plate fin was allowed to vary 

in two ways. The crest of the fin could be inclined 

relative to the base, 

,.+H[l+h(;-$1 (7) 

such that the average height fi remained unchanged. 

The plate could be sharpened like a knife, the degree 
of sharpness depending on the exponent a in the plate 
thickness distribution 

<I 

r(x) = c ; 0 (8) 

The volume of the plate fin was fixed. 

1. 

s s 

11(.X, 
tdydx = fI?L. (9) 

r=O “=o 

The constant C factor that satisfies the volume con- 
straint can be determined by combining equations (8) 

and (9). 
The model constructed between equations (2) and 

(9) was put in dimensionless form by introducing the 

variables 

The dimensionless equations that replace equations 

(2)-( 5) are 

(14) 

au 
05S0=0 and ~~ 0 L7< c_, 

=O. (15) 

where 

(16) 

Worth noting in the dimensionless definition of the 
average height fi is the use of the length scale of 

conduction penetration in the _r direction along the 
fin, (k ~/II,)“~. This means that when Ais much smaller 
than 1 the plate fin is nearly isothermal in they dircc- 

tion, O({,q) g O(t). On the other hand, when fi is 
greater than I, the temperature of the crest of the fin 

approaches the fluid temperature. 
The model presented above shows that the plate fin 

design is represented by four dimensionless numbers 

that account for the following features : 

a, sharpness of the plate cross-section at ,r = con- 
stant 

h, slope of the crest 
I?, inverse of the conduction penetration length in 

they direction 

AIL, plate aspect ratio. 

The first two numbers govern the shape of the fin, 
while the last two are fixed when the overall dimen- 
sions, fin material and fluid flow are specified. The 
effect of these numbers was investigated system- 
atically, and is described in the next two sections. 
The objective is to identify the shapes that lower the 
temperature of the hot spot that occurs along the base 
of the fin (i.e. on the package, Fig. 1). 

3. PLATE FIN WITH VARIABLE THICKNESS AND 

UNIFORM HEIGHT 

Consider first the class of designs in which the crest 

of the plate fin is always aligned with the base plane. 
h = 0. In such cases, the volume constraint (9) dictates 

the following dimensionless expression for the vari- 
able thickness, 

z(t) = (a+l)5” (17) 

such that u = 0 represents the plate with uniform 
thickness, and a = 1 the sharp-edged plate (i.e. tri- 
angular shape when viewed from above). 

The plate temperature distribution O([,q) was deter- 
mined numerically by solving equations (12))( 15) 
using finite differences and successive overrelaxation 
[lo]. The chosen variable thickness function, equation 
(17) creates some numerical difficulties when it is 
combined with the boundary condition (13). The finite 
difference method requires that the base plate tem- 
perature be expressed as 

where AI? is the grid spacing in the rf direction. It is 
clear that 0(<,0) has a discontinuity close to 5 = 0. 
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Table 1. Accuracy test for the case a = 0.4, b = 0, I? = 2, R/L = l/3 (overrelaxation coefficient = 1.95) 

Grid 

Analytically Numerically 
computed computed Hot spot 

integral integral Number of temperature 

E (19) (19) Relative error iterations (f&t) 

30 x 30 l/29 - 1.9024 - 1.9047 - 1.21 x lo-’ II 0.6188 
40x40 l/39 - 1.9803 - 1.9823 -9.8 x 10m4 85 0.6116 
50x50 l/49 -2.0316 -2.0333 -8.36 x 10m4 120 0.6074 
60 x 60 l/59 - 2.0684 - 2.0699 -7.37 x 1o-4 158 0.6047 

102 x 102 2/101 -2.0923 - 2.0929 -3x 1o-4 350 0.5989 

: the numerical results described later in this 
section were obtained using E = 0.02. 

The general trapezoidal domain of the plate fin with 
inclined crest (Fig. 1, bottom) was mapped onto a unit 
square, which was covered with a uniform square grid. 
Finite difference approximations of the transformed 
governing equations and boundary conditions were 
applied to the uniform grid. The fineness of the grid 
was chosen as a trade-off between accuracy and com- 
putation time. The accuracy test consisted of com- 

paring the heat generation rate obtained analytically 
(by integrating equation (13) with equation (17) in the 
computational domain), 

(19) 

with the value of the same integral based on the 
numerical integration of the temperature solution. A 
sample of the accuracy test is presented in Table 1 : 
the grid that was chosen for generating the numerical 
results reported in Sections 3 and 4 was 50 x 50. 

The linear system of finite-difference equations was 

solved by successive overrelaxation. An optimal over- 
relaxation coefficient was selected for each case, and 
the values of this coefficient fell in the range 1.75-1.95. 

The iteration error was set at 10-j. The numerical 
results for Q(t,q) showed that, as expected, the highest 
0 value occurs along the base of the fin. We focused 
then on the base temperature distribution O(l,O), and 
identified the temperature and location of the hot 

spot, 

Qhot = max PW)l. (20) 
A set of representative base temperature distributions 
is presented in Fig. 2. When the plate thickness is 
uniform (a = 0) the base temperature increases mon- 
otonically in the flow direction, and the hot spot is 
located at the trailing bottom corner of the plate 
(< = 1, q = 0). As the sharpness parameter a increases, 
the base temperature becomes more uniform over the 
downstream 90% of the base length. The hot spot 

jumps from 5 = 1 to a 5 value of order 0.1 as the 
sharpness parameter exceeds the value a E 0.42. The 

hot spot temperature continues to increase as the 
number a increases above 0.42. 

Figure 3 summarizes these observations by showing 

how Shot changes as a increases. The filled circles indi- 
cate designs in which the hot spot is located at the 
trailing end of the base. The empty circles correspond 
to cases where the hot spot is located close to the 
leading end. It is clear that the sharpness parameter 

can be selected optimally such that the hot spot tem- 
perature is minimized. In Fig. 3, the optimal ~1 value 

1 
L 

0 0.5 1 

5 

FIG. 2. The effect of the plate sharpness on the temperature 
distribution along the base of the plate fin. 

0 0.2 0.4 

a 

FIG. 3. The effect of the plate sharpness on the temperature 
difference between the hot spot and the free stream. 
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0.01 ’ 
0.1 1 

ii 
4 

FIG. 4. The optimal sharpness parameter and minimum 
dimensionless hot spot excess temperature of a plate fin with 

uniform height. 

is close to 0.42, and the hot spot temperature of the 
plate with uniform thickness (u = 0) is 19% greater 
than the minimum Shot value that corresponds to aopt 
z 0.42. Note further that the optimal design is the 
one in which the base temperature is the most uniform 

(Fig. 2). In conclusion, by sharpening the plate in a 
certain way the designer can (I) minimize the hot 

0 
b 

0.5 I - _.-----._ i.-..-I 

-0.5 0 0.5 

b 

spot temperature, and (2) spread almost uniformly the 
surface temperature of the constant-y” package. 

The optimization process detailed in Figs. 2 and 3 

was repeated for many other combinations of !? and 
R/L, and the conclusions arc summarized in Fig. 4. 
The optimal sharpness parameter uePi takes values of 
the order of 0.4, and is relatively insensitive to changes 
in B and A/&. The minimum hot spot tempe~dturc 

approaches a plateau as fi becomes greater than 1, 
while in the opposite extreme of the fi range. it 

decreases toward 0. 
In the limit I? -+ 0 and A/L + 0 the fin temperature 

is mainly a function of x, and not of y. This means 
that the heat flux released by the lateral H x L surfaces 

is uniform (q’/21-j = constant), and the heat transfer 
coefficient h,. may be estimated using the boundary 
layer theory result for a plate with uniform ffux (c.g~ 
ref. [S], p. 245). Substituting this h, estimate in the Ii 
definjtion (I If we find that at the trailing edge 
O,,, = l/(2!?), which has been projected on Fig. 4. In 
conclusion, in the limit i? + 0 and R/L -+ 0 the hot 

spot temperature does not depend on the sharpness 
parameter a. 

4. PLATE WITH VARIABLE HEIGHT AND 

UNIFORM THICKNESS 

The effect of tilting the crest of the fin was con- 

sidered separately by assuming that the plate thickness 
distribution is given, For simplicity, the plate thick- 

ness was assumed uniform, which is the same as set- 
ting a = 0 and z = I in the model of Section 2. The 
tilting of the crest was governed by the dimensionless 

slope b of equation (7). The b parameter was given 
only values that fall in the vicinity of h = 0, i.e. around 
the reference design of a fin with uniform height. This 

-_i 

-0.5 0 0.5 
b 

FIG. 5. The effect of the crest inclination on the temperature difference between the hot spot and the free 
stream (u = 0). 
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limitation on the range of allowable b values is placed ever, we must keep in mind that the present for- 
by the h model (6), in which it was assumed that the mulation is valid for crests that are tilted only slightly 
boundary layer starts at x = 0 for all y values. The h (i.e. for small b). We learn that in the vicinity of b = 0 
mode1 breaks down in the vicinity of a tilted crest, and the hot spot temperature decreases as b increases. Note 
this vicinity would represent a significant portion of also that the b parameter loses its effect as I? increases 
the average height I’? if b were to take values com- above 1, because in this limit the crest region is almost 
parable with 1 and - I. as cold as the ambient, and becomes ‘inert’ in a heat 

The numerical work proceeded along the path transfer sense. 
described in the preceding section. Figure 5 shows that 
the inclination of the crest influences the temperature 

5. THREE-DIMENSIONAL NUMERICAL MODEL 

difference between the hot spot and the free stream. 
OF THE FIN WITH VARlABLE HElGHT AND 

The hot spot is always located at the trailing point of 
UNIFORM THICKNESS 

the base. The figure seems to suggest that there exists In the preceding section we used a simple model to 
an optima1 slope b,,, such that ehot is minimized, how- show that the fin performance can be improved by 

FIG. 6. The computationai domain used for thme-dimensiona simulations of the fin with variable height. 
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5000 

30 

20 

L* 

10 

1 
0 1 2 -1 0 1 2 

b b 

FE. 7. Three-dimensional numerical results showing the relation between the tilting of the crest and the 
hot spot temperature. 

appropriately tilting its crest. In this section we pursue fin and surrounding Aow. The computational domain 
this conclusion further, with the objective of devel- extends from the plane of symmetry of the fin to a 
oping more accurate info~ation for fin design. The parallel plane su~ciently far in the free stream. The 
new model is based on Fig. 6 and consists of simu- chosen distance between these two planes is greater 
lating numerically the flow and temperature fields than the thickness of the boundary layer that coats 
associated with a single fin. the fin (LR~T,,~“*). Numerical tests indicated that this 

Symmetry allows us to study only one half of the distance (din Fig. 6) is large enough that it does not 

b=O 

0 5 1 

FIG. 8. The isotherms in the plane of symmetry of the plate fin (Re, = 10000, H/L = l/4. T/L = 0.0117, 
k/k, = 7000 ; the flow is from left to right). 
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FIG. 9. Color coded isotherms of the case presented in Fig. 8. 
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influence the results obtained for the fin temperature. 
Similarly, the domain is sufficiently tall and long 
(upstream and downstream) to allow the proper 

simulation of the flow around and over the fin. The 
chosen length and height of the computational 
domain are represented by the dimensions m = 7A 
and I= 2L, which are defined in Fig. 6. 

The nondimensionalized equations that govern the 
steady laminar flow are 

where V2 = a2/Xf2 + a’ja Y2 + d2/dZ2. The dimension- 
less variables are defined by 

(25) 

The energy equations inside and outside the fin are, 
respectively, 

v2F= 0 (27) 

u~+v~+wg=&vT, (28) 
1. 

where 

T- T, 
fzp U,L 

q,/(kt)’ peL = c( . (29) 

In the denominator of the Fdefinition, q, is the heat 
transfer through the base of the fin. The heat flux 
through the base is assumed uniform, q,/(fL) = con- 
stant. The nondimensionalized boundary conditions 
that correspond to the domain of Fig. 6 are: 

au 
-_=o 

av 
dZ 

-=o, w=o 
’ az 

0.5 f+d 
at Z= 0 and Z = ~ 

L (30) 

V=O at Y=O and Y=mlL (31) 

au 
-=() 

aw 
aY , ==O at Y=m/L (32) 

u= 1, V=O, W=O at X=0 (33) 

aT -= 
?Y 

-1 at Y=O, O<Z<F, 

T=O at X=0. (35) 

In addition to these boundary conditions, we speci- 

fied that the wetted surfaces of the fin are impermeable 
and without slip, and that the temperature and heat 
flux vary continuously across the wetted surfaces. The 
continuity of heat flux conditions (not listed here) 
contain the thermal conductivity ratio k/k, : in all the 

numerical runs this ratio was set equal to 7000, which 
is the value for aluminum/air. 

The numerical problem (21~(35) was solved by the 
finite element method using the code FIDAP [I I]. The 

computational domain was discretized nonuniformly 
with isoparametric brick elements with eight nodes. 
The number of elements was chosen such that the 
solution is grid-independent. The results described in 

this section were obtained using a mesh with 6180 
elements (7595 nodes). The accuracy criteria used 
were: (1) a relative error of less than 0.1% in the 

overall pressure drop when the number of grid 
elements changes by lo%, and (2) a relative error of 

less than 10% in the stress components on the fin 
surfaces when the height of the domain changes by 
20%. Trilinear interpolation functions were used to 
approximate the velocity and temperature fields. For 
the pressure field, we selected the discontinuous pen- 
alty approach with a 10m6 error factor. 

As this is a problem of forced convection, the flow 
field was determined first, and the temperature field 
second. The flow solution required roughly 160& 
2000 s on the CRAY Y-MP at the North Carolina 

Supercomputer Center. The convergence criterion 
was lo-’ for both the maximum relative error of the 
velocity solution and the operator residual vectors. 

A combined successive substitution/quasi-Newton 
(Broyden) iterative solution strategy was used to 

solve the nonlinear algebraic system of equations pro- 
duced by the Galerkin weighted residual scheme. 

Figure 7 shows a summary of all the numerical 
runs executed using the three-dimensional model. We 
considered two plate thicknesses (f/L = 0.0468 and 
0.0117) and two average crest heights (n/L = l/2 and 
l/4). We varied the crest inclination b from -0.5 to 
1.9, which is a domain much wider than what we saw 
in Section 4. The free-stream velocity varied widely, 

such that the Reynolds number based on the swept 

length L covered the range 250-10 000. Plotted on the 
ordinate of Fig. 7 is the dimensionless excess tem- 

perature of the hot spot, F,,,,,, which is defined by 
equation (29). The hot spot always occurred on the 
base, in the plane of symmetry of the plate fin, and 
very close to the trailing edge. 

Several features of Fig. 7 are worth noting. First, 
the hot spot temperature decreases as b increases only 
when Re, is greater than approximately 2000, i.e. 
when the sides of the fin are lined by distinct (thin) 
boundary layers. This feature is consistent with the 
model used in Section 4. The slope of the curve F,,,Jb) 

becomes steeper as Re, increases. The decrease of the 
hot spot temperature can be significant : for example, 
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when Re, = IO 000 in the lower frame of Fig. 7, F,,,, 
decreases to 68% of its original value as h increases 
from 0 to 1.9. 

Figure 7 also shows that at Re, values of order 
1000 or less, the tilting of the crest has a relatively small 

effect on the hot spot temperature. This small effect is 
such that F,,,,, has a weak maximum with respect to 
h : the least advantageous inclination (the highest F,,,,,) 

corresponds to h values of approxjmateiy 0.5. 
The patterns of isotherms of Fig. 8 show why the 

hot spot temperature decreases as the crest is tilted to 
‘look’ at the approaching air stream. When the height 
is constant (b = 0), the isotherms are inclined at 
roughly the same angle (-45”) : this indicates a tem- 
perature that increases from teft to right along the 

base, and a portion of the fin (the upper left region) 
that is relatively cold, i.e. ineffective. The tilting of the 
crest places more fin material where it is needed the 
most (near the trailing edge). The isotherms them- 
selves mimick the direction of the crest (Fig. 8, 

bottom), and this means that the crest temperature is 
nearly uniform. 

In addition to lowering the hot spot temperature, 
the tilting of the crest spreads the hot spot over a 
wider region along the base. This is an important 

feature because it translates into smaller temperature 
gradients and smaller thermal stresses in the electronic 

module. 
These conclusions are illustrated further in Fig. 9, 

which is a color display of the temperature fields of 
Fig. 8. The color code consisted of asignning red to 
the highest temperature (the bottom-right corner in 
the top frame) and blue in the free stream (not shown). 

The proliferation of yellow as the crest becomes more 
inclined indicates that the fin and the hot spot become 
colder, and that the fin and its base become more 

isothermal. 
Finally, it is worth nothing that the tilted-crest 

shaps of Figs. 8 and 9 (the middle and bottom frames) 
may seem like the plate fins used on the outside of the 
liquid encapsulated module [3. 121. In the latter, the 
crest was inclined in the other direction, i.e. the fin 

was taller near the start of the boundary layer (air 
natural convection). That feature was the result of 

using the variable fin height to compensate for the 
variation of the heat transfer coefficient on the liquid 
side of the base wall on which the lins were mounted. 
The present study makes the point that the heat-sink 
performance on the air side alone can be improved by 
tilting the fin crests as shown in the lower part of Figs. 

8 and 9. 

6. CONCLUSIONS 

In this paper we showed that the hot spot tem- 
perature of a finned module can be decreased by 
allowing the plate fin thickness and height to increase 
in the flow direction. We reached these conclusions 
by using two models. In the two-dimensional model 
of Section 2, we uncoupled the fin conduction from 

the external convection by assuming that the heat 
transfer coefficient varies as x- I’*, in accordance with 
boundary layer theory. The two-dimensional model 
breaks down when the inclination of the crest of the 
fin becomes excessive. In the second part of the paper 
we solved numerically the three-dimensional problem 

of conjugate fin conduction and external convection. 
Here are the main conclusions and ideas for future 

research. 
(1) The maximum temperature on the base of a fin 

with constant height is reduced by approximately 15% 
if the plate fin is sharpened like a dull knife such that 
its thickness increases as .x’~“~, cf. equation (17) and 

Fig. 3. 
(2) The hot spot tem~rature at the base of a fin 

with constant thickness is reduced by approximately 
30% if the crest is inclined to face the flow, with nearly 
zero height at the leading edge, as shown in the bottom 
frames of Figs. 8 and 9. The forward inclination of 
the crest is the result of having assumed that the base 
of the fin is heated with uniform flux. It can be shown 
that when the top of the module is conductive enough 
that the fin base is isothermal, the optimal crest incli- 
nation has a negative h, i.e. the crest looks down- 
stream. 

(3) In addition to lowering the hot spot tempera- 

ture, each of the design changes (I) and (2) leads to a 
considerably more uniform temperature distribution 
on the module surface on which the finned heat sink 
is installed. 

(4) It is conceivable that an even greater reduction 
in hot spot temperature can be achieved by imple- 
menting the design features (1) and (2) simul- 
taneously. To determine the actual magnitude of this 

combined reduction would be a good topic for a future 
three-dimensional numerical study of the conjugate 
fin-conduction and convection problem (including 
conduction inside the module), in which the sharpness 
and tilting parameters (u, h) both vary. 

(5) A simpler way to proceed would be, first. to 
design the plate fin with constant thickness and height 
by using the classical method (e.g. ref. (81, pp. 65.- 
67) and. second, to reshape the thickness and height 
distributions according to conclusions (I) and (2) 
above, while keeping the fin volume (weight) fixed. To 
determine how well this simpler approach approxi- 
mates the optimal design produced numerically by 
varying u and h, can be the second objective of the 

future study described at (4) above. 
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